
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17536  | https://doi.org/10.1038/s41598-020-73466-6

www.nature.com/scientificreports

Seven decades of chemotherapy 
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Clinical trials establish the standard of cancer care, yet the evolution and characteristics of the social 
dynamics between the people conducting this work remain understudied. We performed a social 
network analysis of authors publishing chemotherapy-based prospective trials from 1946 to 2018 
to understand how social influences, including the role of gender, have influenced the growth and 
development of this network, which has expanded exponentially from fewer than 50 authors in 1946 
to 29,197 in 2018. While 99.4% of authors were directly or indirectly connected by 2018, our results 
indicate a tendency to predominantly connect with others in the same or similar fields, as well as an 
increasing disparity in author impact and number of connections. Scale-free effects were evident, 
with small numbers of individuals having disproportionate impact. Women were under-represented 
and likelier to have lower impact, shorter productive periods (P < 0.001 for both comparisons), less 
centrality, and a greater proportion of co-authors in their same subspecialty. The past 30 years were 
characterized by a trend towards increased authorship by women, with new author parity anticipated 
in 2032. The network of cancer clinical trialists is best characterized as strategic or mixed-motive, 
with cooperative and competitive elements influencing its appearance. Network effects such as 
low centrality, which may limit access to high-profile individuals, likely contribute to the observed 
disparities.

The modern era of chemotherapy began in 1946, with publications describing therapeutic uses of nitrogen 
mustard1,2. Over the next 70 years, the repertoire of available cancer treatments has expanded at an ever-increas-
ing pace. Chemotherapeutics have a notably low therapeutic index, i.e., the difference between a harmful and 
beneficial dose or combination is often quite small3. Consequently, a complex international clinical trial apparatus 
emerged in the 1970s to study chemotherapeutics in controlled settings, and prospective clinical trials remain the 
gold standard by which standard of care treatments are established4,5. Discoveries made by successive generations 
have led to overall improvement in the prognosis of most cancers6.

While social network analysis has been used to study patterns of co-authorship in scientific settings7,8, the 
social component of clinical trial research is not well characterized. Little is known about how social factors have 
shaped the progress of the field, as cancer care has become increasingly subspecialized, and how social network 
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characteristics may reveal patterns of inclusiveness, exclusivity, and disparity. Prior literature has established 
that women in academic medicine are expected to perform to higher standards yet receive less financial and 
institutional support (e.g., grants, awards, salaries, opportunities for tenure) than men with the same qualifica-
tions do9–13. Women must also contend with structural biases against them throughout their careers; this can 
manifest in gendered harassment and evaluations, questions of competence, lack of appropriate mentorship and 
peer support, and other inhospitable working conditions where they are undervalued, if not actively excluded14. 
Past work on co-authorship networks indicates that men are overrepresented in senior authorship roles, particu-
larly in high-impact journals and in fields where research is more costly, and accrue more citations than their 
counterparts who are women15–19.

We hypothesized that the social network of cancer clinical trialists would be a “strategic” aka “mixed motive” 
network, similar to those found in other areas of academic research displaying both collaborative and competitive 
elements reflective of the pressures faced by clinial trialists; this type of social network may be especially prone 
to preferential attachment, where authors with many co-authorship links are more likely to form new links or 
strengthen existing ones than authors with few existing links20. This could contribute to a widening disparity 
between authors with early access to resources through personal networks and authors in more socially disadvan-
tageous positions, e.g., those who come from low-income backgrounds or were the first in their family to attend 
college21,22. These groups are more likely to include underrepresented minorities, e.g., women of color, who face 
a number of discriminatory barriers in pursuing careers in medicine and medical research11,23,24.

In this study, we analyzed the individual impact and collaborative relationships of cancer clinical trialists, 
using co-authorship to define the edges, or links, of social networks. Our primary objective was to model the 
social network and its dynamic development over time; secondary objectives were to examine the roles of sub-
specialization and gender in relation to metrics of productivity, such as individual author impact, longevity in 
the field, position within the network, and similarity to co-authors (homophily).

Results
Baseline characteristics.  N = 5599 of 6301 reviewed publications with an aggregate of N = 29,197 authors 
met the inclusion criteria (CONSORT Figure S1). Cumulatively, most authors in the network (n = 22,761, 78%) 
published at least one randomized trial, with n = 15,340 (52.5%) participating in the publication of a “positive” 
trial (Table S2). Most of the included authors (n = 28,087, 96.2%) participated in the primary publication of a 
clinical trial, while a smaller subgroup (n = 6,773, 23.2%) participated in the publication of updates. The most 
common venues for publication were high-impact clinical journals: the Journal of Clinical Oncology (n = 1595, 
28.5%), the Lancet family (n = 710, 12.7%), the New England Journal of Medicine (n = 495, 8.8%), and the Blood 
family (n = 495, 8.8%). Co-authorship has changed in a non-linear fashion over time: the median number of 
authors per publication increased from n = 6 in 1946 to n = 20 (IQR 16–25) in 2018 (Figure S2). Across subspe-
cialties, the median number of co-authors per publication varied somewhat, from a low of n = 10 (IQR 7–15) in 
gynecologic oncology to a high of n = 16 (IQR 11–22) in dermatologic oncology.

Network dynamics.  Authorship and co-authorship have grown by over 200-fold: in 1946 there were 12 
authors & 30 co-authors; by 2018, there were cumulatively 29,197 authors & 697,084 co-authors (Fig. 1A).

Median longevity is < 1 year at all times, although the number of authors with multiple years in the field 
grows substantially over time (Figure S3). A small number of individuals maintained the highest impact over 
time—nearly 20 years each in the case of chemotherapy pioneers Sidney Farber and James F. Holland (Figure S4). 
In any given year, most authors had a betweenness centrality of < 1% of the maximum; conversely, a very small 
number of authors had an exceptionally high score, with 1% of authors accounting for 100% of the total in recent 
years (Figure S5). Accordingly, an increasingly smaller proportion of authors were both very highly connected 
and highly impactful; in 1970, the 10% highest-impact authors (n = 20) account for 21.4% of links and 54.9% 
of impact; in 2018, the same proportion (n = 2920) account for 37.1% of links and 62.3% of impact. First/last 
authorship has also become concentrated; in 2018 publications, 10% of authors had at least one such role, whereas 
prior to 1980 it was on average > 25% (Figure S6).

The structure of the network changes considerably over time, from relatively dense and connected to sparse 
and modular (Fig. 1B). The final network is very sparse (0.16% of possible links are present); nevertheless, 
n = 29,029 (99.4%) authors are in a single connected component; the next-largest component comprises 14 
authors. Each of the 13 cancer subspecialties developed at different rates, with clear influence of seminal events 
in several subspecialties, e.g., the introduction of adjuvant therapy and tamoxifen for breast cancer, completely 
new classes of drugs for plasma cell disorders, and immunotherapy for melanoma (Fig. 1C)25–31.

Network visualization and cumulative metrics.  The final cumulative network visualization is shown 
in Figs. 2 & S7. The impact score of authors is unevenly distributed, median 0.0532 (range 0–14.31); however, the 
log-transformed impact scores approximate a normal distribution (Figure S8). Authors with longevity ≥ 1 year 
who changed primary subspecialty at least once (n = 2330) had nearly twice the median impact and longevity 
of those who remained in one subspecialty (n = 10,276), 0.25 (IQR 0.11–0.6) versus 0.14 (IQR 0.07–0.35) and 
13 years (IQR 6–19) versus 7 years (IQR 3–12), respectively (P < 0.001 for both comparisons).

Cumulatively, subspecialized authors with calculable homophily (n = 24,560) have a median proportion of 
co-authors sharing the same subspecialty of 88% (IQR 76–95%); 945,167 (71.4%) of these authors’ outlinks are 
within-subspecialty. This is reflected by a high assortativity by subspecialty since the mid-1960s (Fig. 1B).

Gender disparities.  The proportion of authors who are women remained at a nearly steady state of 15% 
until 1980, when it began to gradually increase to a recent high of ~ 40%; over the same time period, the propor-
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tion of women who were first/last authors rose much more slowly (Fig. 3A). Cumulatively, n = 17,187 men had a 
statistically significantly higher median impact than n = 8511 women, 0.075 (IQR 0.032–0.22) versus 0.051 (IQR 
0.022–0.133), P < 0.001; statistically significantly longer median longevity, one year (IQR 0–8) versus zero years 
(IQR 0–5), P < 0.001; and higher median PageRank, 1.75 × 10–5 (IQR 1.01 × 10–5-3.68 × 10–5) versus 1.34 × 10–5 
(IQR 8.74 × 10–6-2.51 × 10–5). For the n = 15,229 men and n = 7245 women with a calculable subspecialty homo-
phily, men and women had comparable median proportions of co-authors within the same primary subspecialty, 
at 0.88 (IQR 0.75–0.95) and 0.89 (IQR 0.78–0.95) respectively. Gender homophily across the network over time 
shows that men have consistently been more likely to collaborate with those of the same gender than women; in 
the final network, median gender homophily among men was 0.77 (IQR 0.67–0.86) versus 0.26 (IQR 0.17–0.38) 
among women. Scatterplots of longevity versus author impact score and PageRank versus homophily are shown 
in Fig. 3B,C for the final cumulative network; prior years are shown in Figure S9 & S10. Histograms of gender 
homophily across time are shown in Fig. 4.

Figure 1.   Network characteristics. (A) Cumulative growth in authorship and co-authorship over time have 
both been nearly log-linear; (B) Network density decreases asymptotically from 45.5% in 1946 to 0.16% in 2018; 
modularity follows a sigmoid pattern with a period of linear increase between 1960–80 followed by a plateau 
at high modularity; assortativity rapidly increases in early decades; median normalized PageRank decreases 
to a low plateau from the 1970s onward; (C) Subspecialties develop at different but broadly parallel rates, with 
seminal events apparently preceding accelerations of individual subspecialties, e.g.,: (1) in the four years after 
1973, combination therapy (AC25), adjuvant therapy26, and tamoxifen27 were introduced in breast cancer; (2) 
thalidomide28 and bortezomib29 were reported to be efficacious for multiple myeloma; and (3) immunotherapy 
(ipilimumab30,31) was introduced in the treatment of melanoma.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17536  | https://doi.org/10.1038/s41598-020-73466-6

www.nature.com/scientificreports/

Sensitivity analysis.  Normalized score distributions did not change significantly, although modulation of 
the trial design coefficient led to a bimodal peak (Figure S11). Correlation of assortativity and modularity was 
high, ranging from 0.815–0.999 for the former and 0.981–0.999 for the latter (Table S3; Figure S12).

Discussion
The remarkable gains in the fields of hematology and oncology can be ascribed to the tireless work of numer-
ous trialists and the generosity of countless patient participants. As a result, systemic antineoplastics now stand 
beside surgery and radiotherapy as a pillar of cancer care. Our analysis of clinical trialists as a social network, 
particularly with respect to the density distribution of PageRank, reveals a mixed-motive network that differs 

Figure 2.   Final cumulative network visualization. The social network graph represents the cumulative field 
of cancer research as of December 31, 2018, with all included published works since 1946 contributing to 
authorship and co-authorship weights. Only authors assigned to a subspecialty are visualized; these account 
for 84% of all authors in the database. This figure highlights various clustering trends by subspecialty, such as 
the apparent sub-clusters of sarcoma research (yellow) and the two dominant clusters of breast cancer research 
(pink). It is clear as well that certain subspecialties are more cohesive than others, such as the tightly clustered 
dermatology (black) compared to the spread-out head and neck cancer authors (red).
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substantially from “collegial” and “friend-based” online social networks. While clinical trials are conducted 
towards a collaborative goal—improved outcomes for all cancer patients—there are significant competitive pres-
sures. Examples of these pressures include resource limitations (e.g., funding and patients available for accrual), 
the tension between prioritization of cooperative group versus industry-funded trials, personal motivations such 
as academic promotion or leadership opportunities, and institutional reputation.

The emergence of formal and informal leaders in scientific networks has been shown to facilitate research as 
well as create clusters32. As Fig. 2 shows, there is a strong tendency for clustering based on subspecialty in the 
complete network, although some subspecialties (e.g., lymphoid and myeloid malignancies) have many more 
interconnections than others (e.g., sarcoma and neuro-oncology). Many of these clusters appear to be organized 
around an individual or group of individuals who have high impact and centrality. As an organizational principle, 
these individuals appear to rarely be in direct competition, but their presence is a clear indicator of scale-free 
phenomena within the network. The facts that betweenness centrality follows a power law cumulative distribution 
bolsters this theory. Scale-free phenomena, which are defined by a power law distribution of connectedness, are 
very common in strategic networks, especially when they become increasingly sparse, as this network does33. 
The two related theories for this network behavior are preferential attachment and fitness. The former observes 
that those with impact tend to attract more impact; the latter postulates that such gains for the “fittest” come at 
the expense of the “less fit”34. Seminal events (Fig. 1C) are likely a driver of preferential attachment35, and may 

Figure 3.   Gender disparities in the network. (A) The network is overwhelmingly dominated by men until 1980, 
when a trend towards increasing authorship by women begins to be seen; however, representation by women in 
first/last authorship remains low; gray shaded lines are 95% confidence intervals of the LOESS curves; (B) Men 
tend on average to have a longer productive period and to achieve a higher author impact score than women 
(P < 0.001 for both comparisons); (C) Men tend on average to be more central and have more collaborations 
outside of their subspecialty. Note that the homophily calculation requires a subspecialty assignment, which 
explains the slightly lower numbers in (C) as compared to (B).
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partially explain why some authors change their primary subspecialty at least once over time (e.g., through a 
“bandwagon” effect driven by the diffusion of ideas36). Given that these authors were observed to have nearly 
twice the impact and longevity of their single subspecialty peers, this dynamic will be a focus of future study, 
including calculation of the Q factor, a metric developed to quantify the ability of a scientist to “take advantage of 
the available knowledge in a way that enhances (Q > 1) or diminishes (Q < 1) the potential impact p of a paper”37.

In the analysis of network dynamics (Fig. 1B), the field as a whole appears to emerge in the 1970s, which is also 
when medical oncology and hematology were formally recognized through board certification. Measurements of 
field maturity are by their nature subjective, but the pessimism38 of the late 1960s was captured by Sidney Farber: 
“…the anticancer chemicals, hormones, and the antibiotics…marked the beginning of the era of chemotherapy 
of cancer, which may be described after 20 years as disappointing because progress has not been more rapid…”39. 
These concerns prompted the US National Cancer Act of 1971, which was followed by the leveling of modularity 
at a very high level from 1976 onwards, suggesting that the subspecialties generated in the 1970s have remained 
stable. The assortativity by subspecialty has increased as well, with recent levels approximately twice those seen in 
a co-authorship network of physicists20. While median PageRank has decreased markedly, indicating decreasing 
influence for the average author, the distribution in 2018 is broadly right-skewed (Figure S13). These findings 
reveal a high level of increasing exclusivity, suggesting that it is becoming progressively more difficult to join the 
top echelon of the network. This has major implications for junior investigators’ mobility, and potentially for the 
continued health of the network as a whole.

While there is much to be applauded in the continued success of translating research findings into the clinic, 
we observed clear gender disparities within the cancer clinical trialist network: women have a statistically sig-
nificantly lower final impact score, shorter productive period, less centrality, and less collaboration with those 
outside of their primary subspecialty. These findings are consistent with and build upon previous literature on 
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the challenges facing women in pursuing and remaining in academic careers10,16,19,40. They are also consistent 
with more recent gender disparity findings, such as those observed in research published on COVID-1941. Other 
studies investigating the basis for such a gender gap have identified several layers of barriers to the advancement 
of women in academic medicine. These include sexism in the academic environment, lack of mentorship, and 
inequity with regards to resource allocation, salary, space, and positions of influence42,43. Our study suggests that 
additional network factors such as relatively low centrality, which indicates a lack of access to other individuals 
of influence, and high homophily, which indicates a lack of access to new ideas and perspectives, also perpetuate 
the gender gap—corroborating recent findings from graduate school social networks44.

It is somewhat encouraging that there has been a steady increase in the proportion of authorship by women 
since 1980 (Fig. 3A). This increase is observed approximately a decade after the passage of Title IX of the US Civil 
Rights Act in 1972. Given that the majority of authors in this network are clinicians, a partial explanation could 
be that US-based women began to attend previously all-male medical schools in the early 1970s, completed their 
training, and began to contribute to the network as authors approximately 10 years later. If the nearly linear trend 
continues, we predict that gender parity for new authors entering the network will be reached by the year 2032, 
26 years after US medical school enrollment approached parity45. However, the proportion of first/last authors 
who are women is growing much more slowly, and parity may not be reached for 50+ years, if at all. Given that 
senior authorship is a traditional metric of scholarly productivity, it may be particularly difficult for clinical 
trialists who are women to obtain promotion under the current paradigm. One possible solution is to increase 
the role of joint senior authorship, which remains vanishingly rare in the clinical trials domain (Furman et al. 
201446 is one of very few examples that we are aware of)—although this is predicated on the acceptance of these 
roles by advancement and promotion committees. The field itself may also suffer from slow entry of new talent 
and a lack of broad perspectives.

While the gender mapping algorithm and manual lookups are imperfect, our approach is consistent with 
prior work in this area16,47. Unisex names posed a particular challenge48. It should be noted that we could not 
account for all situations where an author changed their name (e.g., a person assumed their spouse’s surname); 
this could have led to overestimation of representation by women and underestimation of impact, since this 
practice is more common with women. It is also possible that an individual’s gender identity does not match the 
gender assignment of their given name. Future work will include further analysis of gender disparities, factoring 
in institutional affiliation and highest degree(s) obtained, which are both likely to have significant influence on 
publication and senior authorship49,50.

There are several additional limitations to this work, starting with the fact that co-authorship is but one way to 
measure social network interactions and this study reports results from published trials, which induces publica-
tion bias. Although HemOnc.org aims to be the most comprehensive resource of its kind, non-randomized trials 
and randomized phase II trials are intentionally underrepresented, given that findings at this stage of investiga-
tion infrequently translate to practice-changing results (e.g., approximately 70% of oncology drugs fail during 
phase II)51–53. The effect of any biases introduced by this underrepresentation is unclear, given the confounding 
influence of publication bias, which may itself be subject to gender disparity54. Some older literature which no 
longer has practice-changing implications may have been overlooked.

During name disambiguation, some names could not be resolved, primarily because neither MEDLINE nor 
the primary journal site contained full names. This effect is non-random, since certain journals do not publish 
full names. The choice of coefficients and their relative weights was based on clinical intuition and consensus; 
given that the “worth” of metrics such as first/last authorship is fundamentally qualitative, there must be some 
degree of subjectivity when formulating a quantitative algorithm. While the sensitivity analysis demonstrated 
that neither normalized author impact score distribution, assortativity, nor modularity are majorly changed by 
variation in the trial design and author role coefficients, it remains possible that other combinations of coefficients 
and relative weightings could lead to different results. Furthermore, our impact algorithm weighs heavily on 
first and last authorship, but the definition of senior authorship has changed over time. For example, in the 1946 
article by Goodman et al.2, the authors were listed in decreasing order of seniority (personal communication). 
In general, the impact score used in this paper, although similar to others proposed in the academic literature, 
is not validated and should be interpreted with caution. Finally, the majority of authors in this database publish 
extensively, and their impact as measured here should not be misconstrued to reflect their contributions to the 
cancer field more broadly.

In conclusion, we have described the first and most comprehensive social network analysis of the clinical 
trialists involved in chemotherapy trials. We found emergent properties of a strategic network and clear indica-
tions of gender disparities, albeit with improvement in representation in recent decades. The network has been 
highly modular and assortative for the past 40 years, with little collaboration across most subspecialties. As the 
field pivots from an anatomy-based to a precision oncology paradigm, it remains to be seen how the network 
will re-organize so that the incredible progress seen to date can continue.

Methods
Data source and curation process.  All prospective trials of systemic antineoplastics published between 
1946–2018 and referenced on HemOnc.org were considered for inclusion. HemOnc.org is the largest collabora-
tive wiki of chemotherapy drugs and regimens and has a formal curation process55. In order for a reference to be 
included on HemOnc.org, it generally must include at least one regimen meeting the criteria outlined here: https​
://hemon​c.org/wiki/Eligi​bilit​y_crite​ria. As such, the majority of references on HemOnc.org are randomized 
controlled trials (RCTs) or non-randomized trials with at least 20 participants and/or practice-changing implica-
tions. One of the main goals of HemOnc.org is creating a database of all standard of care systemic antineoplastic 
therapy regimens. This is difficult as there is no universally accepted definition of standard of care except in a 

https://hemonc.org/wiki/Eligibility_criteria
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legal capacity. For example, the state of Washington, in its legislation on medical negligence, inversely defines the 
standard of care as “exercis[ing] that degree of skill, care, and learning possessed at that time by other persons in 
the same profession”. We currently employ four separate definitions that meet the threshold of standard of care:

1.	 The control arm of a phase III randomized controlled trial (RCT). By implication, this means that all phase 
III RCTs with a control arm must eventually be included on the website.

2.	 The experimental arm(s) of a phase III RCT that provide(s) reasonable evidence (P-value less than 0.10) of 
superior efficacy for an intermediate surrogate endpoint (e.g., PFS) or a strong endpoint (e.g., OS).

3.	 A non-randomized study that is either:

	 (i)	 The basis for a regulatory agency approval (e.g., the US Food and Drug Administration [FDA])
	 (ii)	 Recommended as a top-level regimen by the American Society of Clinical Oncology (ASCO), the 

European Society for Medical Oncology (ESMO), or the National Comprehensive Cancer Network 
(NCCN).

4.	 Any study (including case series and retrospective studies) that is specifically recommended by a member of 
the HemOnc.org Editorial Board. All section editors of the Editorial Board with direct oversight of disease-
specific pages are board-eligible or board-certified physicians.

In order to identify new regimens and study references for inclusion on HemOnc.org, we undertake several 
parallel screening methods:

1.	 PubMed search for (“Phase 3”[Title/Abstract] OR “Phase III”[Title/Abstract]) AND “neoplasms”[MeSH 
Terms] AND Clinical Trial[ptyp] (annual; 2019 review currently underway)

2.	 PubMed email alert for “Clinical Trial, Phase III”[Publication Type] AND “Neoplasms”[Mesh] (subscription; 
ongoing per PubMed alerting criteria)

3.	 Review of the eTOC of the following “top-tier” general medical and hematology/oncology journals (subscrip-
tion; ongoing per journal publication schedules):

	 (i)	 JAMA
	 (ii)	 The Lancet
	 (iii)	 The New England Journal of Medicine
	 (iv)	 Annals of Oncology
	 (v)	 Blood
	 (vi)	 JAMA Oncology
	 (vii)	 Journal of Clinical Oncology
	 (viii)	 The Lancet Haematology
	 (ix)	 The Lancet Oncology

4.	 Time permitting, review of the eTOC of other hematology/oncology journals, conference proceedings, and 
e-mail alerts

5.	 Review of all freely available Cochrane Library Reviews under the topics “Cancer” and “Blood disorders” 
(biennial; last completed: October 2018)

6.	 Review of all ASCO, ESMO, and NCCN clinical practice guidelines (biennial; last completed: December 
2018)

7.	 Review of all studies cited on the FDA drug label (“package insert”) section 14 (CLINICAL STUDIES) for all 
antineoplastic agents (ongoing for new approvals and new indications; review of all available existing labels 
completed: September 2019)

8.	 Queries to all Editorial Board members (quarterly).

As part of the process of building HemOnc.org, we have also systematically reviewed all Lancet, JAMA, and 
New England Journal of Medicine tables of contents from 1946 to December 31, 2018. In addition, the citations 
of any included manuscript are hand-searched for additional citations. For any treatment regimen that has been 
subject to randomized comparison, we additionally seek to identify the first instance in which such a regimen was 
evaluated as an experimental arm; if no such determination can be made, we seek the earliest non-randomized 
description of the regimen for inclusion on the website. In order or prioritization, phase III RCTs are added first, 
then smaller RCTs such as randomized phase II, followed by non-randomized trials, followed by retrospective 
studies or case series identified by our editorial board as relevant to the practice of hematology/oncology.

When a reference is added to HemOnc.org, bibliographic information including authorship is recorded. The 
usually coincides with MEDLINE record details, although some older references in MEDLINE are capped at ten 
authors and are manually completed based upon the publication of record. For trials that do not list individual 
authors (e.g., The Elderly Lung Cancer Vinorelbine Italian Study Group56), the original manuscript and appen-
dices are examined for a writing committee. If a writing committee is identified, the members of this committee 
are listed as authors in the order that they appeared in the manuscript. If no writing committee is identified, 
the chairperson(s) of the study group are listed as the first & last authors. If no chairpersons are listed, the cor-
responding author is listed as the sole author.
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Publications solely consisting of the evaluation of drugs not yet approved by the FDA or other international 
approval bodies were not included. Trials that appeared in abstract form only, reviews, retrospective studies, 
meta-analyses, and case reports were excluded, as were trials reporting only on local interventions such as sur-
gery, radiation therapy, and intralesional therapy. Non-antineoplastic trials (Table S1) and trials of supportive 
interventions (e.g., antiemesis; growth factor support) were also excluded.

Disambiguation of author names.  For each included publication, author names were extracted and dis-
ambiguated. Author names on HemOnc.org are stored in the MEDLINE LastName_FirstInitial (MiddleInitial) 
format, which can lead to two forms of ambiguity: (1) the short form, e.g., Smith_J, can refer to two or more indi-
viduals, e.g., Julian and Jane Smith; (2) two short forms can refer to the same individual, e.g., Kantarjian_H and 
Kantarjian_HM. Additionally, names can be misspelled and individuals can change their name over time (e.g., 
a person assumes their spouse’s surname). We undertook several steps to disambiguate names: (1) full first and 
middle names, when available, were programmatically accessed through the NCBI PubMed eUtils57 application 
programming interface; (2) when not available through MEDLINE, full first names were searched for on jour-
nal websites or through web search engines; (3) automatic rules were developed to merge likely duplicates; and 
(4) some names were manually merged (e.g., misspellings: Benboubker_Lofti and Benboubker_Lotfi; alternate 
forms: Rigal-Huguet_Francoise and Huguet-Rigal_Francoise; and subsumptions: Baldotto_Clarissa and Serodio 
da Rocha Baldotto_Clarissa). Transformation algorithms are available upon request, and the full mapping table 
is provided in Supplemental File 1.

Gender mapping.  Once the name disambiguation step was complete, we mapped authors with full name 
available to gender. We first mapped names to genders using US census data, which includes the relative frequen-
cies of given names by gender in the population of US birth from 1880 to 2017. We calculated the gender ratio 
for names that appeared as both genders. For names with gender ratio > 0.9 for one gender (e.g., John, Rebecca), 
we assigned the name to that gender. To expand gender mapping to include names that are more frequently 
seen internationally (e.g., Jean, Andreas), we used a program that searches from a dictionary containing gender 
information about names from most European countries as well as some Asian and Middle Eastern countries58. 
For unmatched first names (e.g., Dana, Michele), we manually reviewed for potential gender assignment. For 
some names that are masculine in certain countries and feminine in others (e.g., Andrea, Daniele, and Pascale 
are masculine in Italy and feminine elsewhere), we mapped based on surnames. Finally, we performed manual 
internet searches to look for photographs and pronouns used in online content such as faculty profiles, book 
biographies, and professional social media accounts for the remaining unmapped full names associated with a 
longevity of greater than one year.

A total of 25,698 (88%) authors were assigned to the categories of woman (N = 8511; 29.2%) or man 
(N = 17,187; 58.9%). The gender of most of the people with unassigned names could not be determined because 
they only appeared with initials (N = 2716; 9.3%) in the primary publication and MEDLINE. The remaining 
N = 685 (2.3%) were ambiguously gendered names that could not be resolved through manual searching, and 
were excluded in the gender-specific analyses. The full mapping table is provided in Supplemental File 2.

Author impact score.  We considered existing metrics for measuring author impact59–62, but ultimately 
proceeded with our own formulation given some of the unique considerations of prospective clinical trials and 
their impact. Every author was assigned an impact score, using an algorithm calculated per manuscript using 
four coefficients: (1) author role; (2) trial type; (3) citation score; (4) primary versus updated analysis. The coef-
ficients are multiplied to arrive at the score, and the total author impact score is summed across all of their 
published manuscripts.

Author Role: First and last author roles are assigned a coefficient of three; middle authors are assigned a 
coefficient of one. When joint authorship is denoted in a MEDLINE record, there is an additional attribute 
“EqualContrib” that is set to “Y” (yes). We look for this during the parsing process and treat these authors as 
first or last authors when the attribute is detected.

Trial Type: Any prospective trial with randomization is denoted as randomized and the authors of any manu-
script reporting on such a trial are assigned a coefficient of two. Non-randomized trials are assigned a coefficient 
of one. For manuscripts that reported on more than one trial with mixed designs (i.e., one or more randomized 
and one or more non-randomized trials), the randomized coefficient was used.

Citation Score: We programmatically obtained a snapshot of citation counts from Google Scholar from Sep-
tember 2019 and used unadjusted total citations as the citation score coefficient for the years 1946–2008. As more 
recent publications are still accruing citations, raw citation count is not an appropriate measure of their impact. 
Therefore, we have calculated a blended citation score for articles published between 2009–2018, adding the 
phased in median citation count for the journal tier in which the article was published for the years 1946–2008 
(see Tables S4 & S5 and Figure S14). The citations scores are normalized to the manuscript with the maximum 
number of citations (Stupp et al. 200563, with 13,341 citations), such that the maximum citation score is one.

Primary Publications vs. Updates: The baseline coefficient is one. For updates, this score is multiplied by a 
half-life decay coefficient; i.e., scores for the first update are multiplied by 50%; scores for the second update by 
25%; and so forth. This rule is applied equally to updates and subgroup analyses. For manuscripts that reported 
on pooled updates of more than one trial, the score was multiplied by the half-life coefficient corresponding to 
the update that resulted in the maximum score.

See examples in Supplemental Methods.
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Subspecialty designation of each publication.  Each publication was assigned to one of 13 disease-
specific cancer subspecialties based on the cancer(s) studied (Table S1). The majority of publications report on 
a clinical trial carried out in one disease or several diseases mapping to the same subspecialty. For publications 
studying diseases that map to more than one subspecialty, each author’s impact score for that publication was 
divided evenly across the subspecialties. Several clinical trials employ a site-agnostic approach, e.g., to a “cancer 
of unknown primary” or to biomarker-defined subsets of cancers (e.g., a basket trial64); for these, impact across 
subspecialties was split manually (Table S6).

Subspecialty designation based on authorship.  Authors were eligible for assignment to a primary 
subspecialty based on whether they were a first or last author at least once in the subspecialty, or whether they 
had a cumulative impact of at least one standard deviation below the mean of the author impact score of all 
authors in the subspecialty. Authors who met either of these criteria were assigned to a primary subspecialty 
based on where the majority of their impact lay; if an author had equal impact in two or more subspecialties they 
were assigned equally to the subspecialties. This assignment was recalculated on an annual basis if the author 
had new publications, and primary subspecialty was re-assigned if a new subspecialty met either of the criteria 
and the impact in that subspecialty was higher than in the previous primary subspecialty. Authors not meeting 
either of these criteria were assigned a primary subspecialty of “None” and were not included in the homophily 
analysis or the network visualization.

Author longevity.  Author longevity was calculated as the interval between their first and final publication 
in the database. Given that preparing and publishing results of clinical trials can take substantial time, authors 
with first publications prior to 2016 and final ones in 2016 or 2017 had their final publication year adjusted to 
2018.

Social network construction and metrics.  A dynamic social network was created with nodes repre-
senting authors and links representing co-authorship. The dynamic social network was discretized by year and 
the authors, scores, and links were cumulative (e.g., the 20th network was cumulative from 1946–1965). There-
fore, once an author is added to the network, they remain in the network, with their impact score cumulatively 
increasing as they publish and remaining constant if publication activity ceases. The following temporal metrics 
were calculated: (1) network density (the number of actual connections/links present divided by the total num-
ber of potential connections); (2) modularity65 by subspecialty (a measure of how strongly a network is divided 
into distinct communities, in this case subspecialties, defined as the number of edges that fall within a set of 
specified communities minus the number expected in a network with the same number of vertices and edges 
whose edges were placed randomly); (3) assortativity66 by subspecialty (a measure of the preference of nodes in 
a network to attach to others that are similar in a defined way, in this case the same subspecialty; assortativity is 
positive if similar vertices tend to connect to each other, and negative if they tend to not connect to each other); 
(4) betweenness centrality67 (a measure reflecting how important an author is in connecting other authors, cal-
culated as the proportion of times that an author is a member of the bridge that forms the shortest path between 
any two other authors); (5) PageRank68 (another measure of centrality, this time considering the connection pat-
terns among each author’s immediate neighbors; its value for each author is the probability that a person starting 
at any random author and randomly selecting links to other authors will arrive at the author); and (6) proportion 
of co-authors sharing either the same primary subspecialty designation or the same gender (hereafter referred to 
as homophily). Network density, modularity, and assortativity are calculated at the network level, while between-
ness centrality, PageRank, and homophily are calculated at the author (node) level. Further definitions of these 
metrics are provided in the Supplemental Glossary.

All metrics incorporated the weighted co-authorship score, which takes into account each co-author’s impact 
modified by the number of authors of an individual publication. For each pairwise collaboration, as defined 
by co-authorship on the same manuscript, a co-authorship score was calculated and used as the edge weight; 
duplicated edges were allowed to reflect the fact that weights could be distributed in a non-even fashion (e.g., 
two co-authors could be middle authors on a lower-impact publication as well as senior authors on a separate 
high-impact publication). This score was first calculated by multiplying the individual authors’ manuscript-
specific impact scores together. In order to acknowledge the role of middle authors in large multi-institutional 
studies, this preliminary score was divided by the total number of authors on the manuscript. This has the effect 
of decreasing the weight of any individual co-authorship relationship in a paper with many authors, while allow-
ing the overall weight of the neighborhood consisting of all co-authorship connections to increase linearly with 
the number of authors (see examples in Supplemental Methods).

In order to visualize the final cumulative network, layout was determined using the distributed recursive graph 
algorithm69. Nodes were sized by author impact score rank and colored by primary subspecialty designation. 
Edge width was determined by the weighted co-authorship score.

Statistical analysis.  Non-independent network metrics including growth, density, assortativity, modu-
larity, and PageRank are reported descriptively with medians and interquartile ranges (IQR). Gender propor-
tion over time was fit with locally estimated scatterplot smoothing (LOESS) regression using default settings 
of degree = 2 with smoothing parameter/span α = 0.7570. For the final cumulative network, the independent 
variables author impact score and longevity were compared (1) between genders and (2) by whether the author 
changed subspecialties over time; only those authors with longevity ≥ 1 year were included in the second com-
parison. These comparisons were made with the two-sided Wilcoxon rank sum test; P value < 0.05 was consid-
ered statistically significant.
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Sensitivity analysis.  To determine whether the scoring algorithm was robust to modifications, we con-
ducted a sensitivity analysis where the author role and trial design coefficients were varied by ± 67% and ± 50%, 
respectively. Normalized density distributions for the final cumulative network under each permutation were 
calculated, and temporal assortativity and modularity were compared to baseline with Pearson’s correlation coef-
ficient.

Conference presentation.  A version of this manuscript is posted on the medRxiv preprint server, accessi-
ble here: https​://www.medrx​iv.org/conte​nt/10.1101/19010​603v1​. A very early version of the work was presented 
in poster format at the 2018 Visual Analytics in Healthcare workshop (November 2018). There are no other prior 
presentations.

Data availability
The datasets generated and analyzed in this study are available at Harvard Dataverse71.
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